Archivos de la categoría ‘–Electrónica–’

“Los viejos hábitos tardan en morir” dice Mick Jagger en la canción de nombre homónimo compuesta para la película “Alfie”, y si eres lector asiduo de este blog sabrás cuán cierto es ya que como makers siempre estamos trasteando con diferentes artilugios electrónicos de diferentes épocas apoyándonos en tecnologías actuales como microcontroladores o mini computadoras, desde tubos nixie y tubos geiger hasta proyectos de robótica avanzada, pasando por seguridad electrónica y seguridad en sistemas.

En esta ocasión tenemos sobre la mesa un proyecto de consolas retro para devolverles la vida a nuestros antiguos (pero infalibles) mandos de nuestras excelsas consolas como Sega Mega Drive o Super Nintendo, en este punto se me “pianta” un lagrimón como diría Carlos Gardel.

Recordando aquellos tiempos cuando todo era mejor (difícil es mirar al pasado con los ojos del presente), la Mega Drive, conocida en diversos territorios de América como Genesis, fue la tercera consola de Sega cuya primera versión fue lanzada en Japón en 1988, sucedida por el lanzamiento en Norteamérica bajo el renombramiento de Genesis en 1989.

Por otra parte, la Super Nintendo Entertainment System, abreviada habitualmente como Super Nintendo, Super NES o SNES, también llamada Super Famicom es la tercera videoconsola de sobremesa de Nintendo, se lanzó en Japón el miércoles 21 de noviembre de 1990. Fue la más exitosa y vendida de la era de los 16 bits. Gracias al chip Super FX, la SNES tuvo los primeros videojuegos totalmente tridimensionales en la consola, siendo Star Fox el primer videojuego para consola de videojuegos con gráficos completamente tridimensionales.

La rivalidad entre Nintendo y Sega dio lugar a lo que se ha descrito como una de las guerras de consolas más notables en la historia de los videojuegos. Mientras que en Japón Sega se mantuvo distante en el mercado de videojuegos, en Norteamérica se mantendría dominante con su consola Sega Genesis, llamada Sega Mega Drive en Europa, desarrollando importantes campañas publicitarias agresivas en contra de Nintendo a partir del año 1989, una de las más recordadas por el público americano fue la campaña publicitaria llamada “Genesis does what Nintendon’t” (en español: “Genesis hace lo que Nintendo no puede“) que demostraba las capacidades técnicas superiores de la consola de Sega en 16 bits y un extenso cátalogo de videojuegos deportivos frente a las capacidades en 8 bits de la consola NES con sus videojuegos licenciados de títulos arcade. Sin embargo, uno de los factores claves del éxito de la Genesis en Estados Unidos fue la incorporación del videojuego Sonic the Hedgehog en el paquete de la consola en 1991, el título logró tener críticas favorables y ayudó a que varios jugadores compraran la consola Genesis en lugar de la SNES. Para 1992, Nintendo tendría que enfrentarse ahora con un rival ya establecido en los mercados americanos y europeos durante algunos años, solo en Norteamérica lograría consagrarse hasta el año 1994.

Con estos titanes y pioneros de las consolas de videojuegos, probablemente en algún lugar de casa tenemos guardada y cubierta de polvo alguna de estas consolas o ambas, ¿por qué no? en su caja con los respectivos mandos. En caso de no ser funcional la consola o simplemente deseamos conectar los mandos a nuestra PC para reutilizarlos en nuestros emuladores favoritos deberemos seguir los pasos de esta humilde publicación.

Previamente a realizar desarme, soldado y programación investigué acerca de los mandos mencionados anteriormente, sus pines, conectores y señales utilizadas por los mismos. Sega Genesis utilizó un enfoque ligeramente diferente en la configuración de sus pines con respecto al mando de Atari. La conexión del mando de Sega parece ser la configuración estándar de un mando de 2 botones donde los pines 6 y 9 se usan para los botones que conectan a tierra el pin cuando se presionan. Lo único extraño es que el mando también requiere 5V en el pin 5. Sega ha agregado un modelo de 6 botones además de su configuración original de 3 botones. Los mandos de 6 botones usan esencialmente la misma interfaz, pero agregan más botones mediante un circuito integrado adicional (CMOS 74HC157) que multiplexa las nuevas señales con las señales de joystick existentes, usando el bit de control en el pin 7 del conector. Este es un multiplexor CMOS cuádruple de 2 líneas a 1 línea de alta velocidad. La consola puede, con ayuda del pin “Select”, elegir entre dos funciones en cada entrada. Si el pin 7 se deja flotando, la línea asume por defecto un valor lógico alto.

Lista de Componentes
1 Mando de Consola Sega Genesis o SNES.
1 Sparkfun Arduino Pro Micro 5V (o compatible).
35mm Tubo Termocontraíble (diám. 20mm)
Librería Joystick de Matthew Heironimus

En primer lugar tomaremos el mando por el extremo del conector y cortaremos aproximadamente 10cm de cable como observamos en la siguiente imagen:

(click para ampliar)

Ahora debemos identificar y establecer una relación entre los pines del conector y los colores de los cables para así conectarlos correctamente a nuestro Arduino Pro Micro. Como vemos en la imagen he utilizado un pequeño alfiler (que también podría ser un pequeño trozo de cable o un clip) para establecer la correspondencia. Desde luego el multímetro debe encontrarse seteado para medición de continuidad, prueba de diodos o un valor óhmico lo más bajo posible.

(click para ampliar)

Esta prueba la llevaremos a cabo con la ayuda de la siguiente imagen y tabla.

(Vista frontal del conector hembra D-SUB9 bajo prueba)

Pin D-SUB9
Descripción
Pin Arduino Pro Micro
Color (*)
1 Arriba / Z 2 Amarillo
2 Abajo / Y 3 Naranja
3 Izquierda / X 4 Rojo
4 Derecha / Mode 5 Marrón
5 5V VCC Negro
6 A / B 6 Verde
7 SELECT 8 Azul
8 GND GND Gris
9 START / C 7 Blanco

(*) Los colores pueden variar.

Habiendo establecido exitosamente la relación entre los pines del conector D-SUB9 y los colores de los cables, procederemos a programar nuestro Arduino Pro Micro dejando como último paso el soldado de los cables del mando a los pines de nuestro Arduino.

#include <Joystick.h>

// Create Joystick
Joystick_ Joystick;

const int PLAYERS = 2;
 
// Controller Button Flags
const int ON = 1;
const int UP = 2;
const int DOWN = 4;
const int LEFT = 8;
const int RIGHT = 16;
const int START = 32;
const int A = 64;
const int B = 128;
const int C = 256;
const int X = 512;
const int Y = 1024;
const int Z = 2048;
const int MODE = 4096;
 
// Controller DB9 Pin 7 Mappings. Controller 0,1
const int SELECT[] = { 8, 9 };
 
typedef struct
{
  int player;
  int pin;
  int lowFlag;
  int highFlag;
  int pulse3Flag;
} input;
 
// Controller DB9 Pin to Button Flag Mappings
// First column is the controller index, second column
// is the Arduino pin that the controller's DB9 pin is
// attached to
input inputMap[] = {
  { 0,  2,  UP,    UP,     Z    }, // P0 DB9 Pin 1
  { 0,  3,  DOWN,  DOWN,   Y    }, // P0 DB9 Pin 2
  { 0,  4,  ON,    LEFT,   X    }, // P0 DB9 Pin 3
  { 0,  5,  ON,    RIGHT,  MODE }, // P0 DB9 Pin 4
  { 0,  6,  A,     B,      0    }, // P0 DB9 Pin 6
  { 0,  7,  START, C,      0    }, // P0 DB9 Pin 9
  { 1,  A0, UP,    UP,     Z    }, // P1 DB9 Pin 1
  { 1,  A1, DOWN,  DOWN,   Y    }, // P1 DB9 Pin 2
  { 1,  A2, ON,    LEFT,   X    }, // P1 DB9 Pin 3
  { 1,  A3, ON,    RIGHT,  MODE }, // P1 DB9 Pin 4
  { 1,  A4, A,     B,      0    }, // P1 DB9 Pin 6
  { 1,  A5, START, C,      0    }  // P1 DB9 Pin 9
};
 
typedef struct
{
  int player;
  int flag;
  char key;
} output;
 
// Controller Button Flag to Keyboard Mappings
// First column is the controller index, second column
// is the button flag, third is joystick button
output outputMap[] = {
  { 0, UP,    0 },
  { 0, DOWN,  1 },
  { 0, LEFT,  2 },
  { 0, RIGHT, 3 },
  { 0, START, 4 },
  { 0, A,     5 },
  { 0, B,     6 },
  { 0, C,     7 },
  { 0, X,     8 },
  { 0, Y,     9 },
  { 0, Z,     10 },
  { 0, MODE,  11 },
  { 1, UP,    12 },
  { 1, DOWN,  13 },
  { 1, LEFT,  14 },
  { 1, RIGHT, 15 },
  { 1, START, 16 },
  { 1, A,     17 },
  { 1, B,     18 },
  { 1, C,     19 },
  { 1, X,     20 },
  { 1, Y,     21 },
  { 1, Z,     22 },
  { 1, MODE,  23 }
};

 
// Controller State
int currentState[] = { 0, 0 };
int lastState[] = { -1, -1 };
 
// Default to three-button mode until six-button connects
boolean sixButtonMode[] = { false, false };
 
void setup()
{
  // Setup input pins
  for (int i = 0; i < sizeof(inputMap) / sizeof(input); i++)
  {
    pinMode(inputMap[i].pin, INPUT);
    digitalWrite(inputMap[i].pin, HIGH);
  }
  
  // Setup select pins
  for (int i = 0; i < PLAYERS; i++)
  {
    pinMode(SELECT[i], OUTPUT);
    digitalWrite(SELECT[i], HIGH);
  }

  // Initialize Joystick Library
  Joystick.begin(false);  
}
 
void loop()
{
  readButtons();
  sendStates();
}
 
void readButtons()
{
  for (int i = 0; i < PLAYERS; i++)
  {
    resetState(i);
    if (sixButtonMode[i])
    {
      read6buttons(i);
    }
    else
    {
      read3buttons(i);
    }
  }
}
 
void resetState(int player)
{
  currentState[player] = 0;
}
 
void read3buttons(int player)
{
  // Set SELECT LOW and read lowFlag
  digitalWrite(SELECT[player], LOW);
     
  delayMicroseconds(20);
     
  for (int i = 0; i < sizeof(inputMap) / sizeof(input); i++)
  {
    if (inputMap[i].player == player && digitalRead(inputMap[i].pin) == LOW)
    {
      currentState[player] |= inputMap[i].lowFlag;
    }
  }
 
  // Set SELECT HIGH and read highFlag
  digitalWrite(SELECT[player], HIGH);
     
  delayMicroseconds(20);
     
  for (int i = 0; i < sizeof(inputMap) / sizeof(input); i++)
  {
    if (inputMap[i].player == player && digitalRead(inputMap[i].pin) == LOW)
    {
      currentState[player] |= inputMap[i].highFlag;
    }
  }
    
  // When a six-button first connects, it'll spam UP and DOWN,
  // which signals the game to switch to 6-button polling
  if (currentState[player] == (ON | UP | DOWN))
  {
    sixButtonMode[player] = true;
  }
  // When a controller disconnects, revert to three-button polling
  else if ((currentState[player] & ON) == 0)
  {
    sixButtonMode[player] = false;
  }
  
  delayMicroseconds(20);
}
 
void read6buttons(int player)
{
  // Poll for three-button states twice
  read3buttons(player);
  read3buttons(player);
  
  // After two three-button polls, pulse the SELECT line
  // so the six-button reports the higher button states
  digitalWrite(SELECT[player], LOW);
  delayMicroseconds(20);
  digitalWrite(SELECT[player], HIGH);
  
  for(int i = 0; i < sizeof(inputMap) / sizeof(input); i++)
  {
    if (inputMap[i].player == player && digitalRead(inputMap[i].pin) == LOW)
    {
      currentState[player] |= inputMap[i].pulse3Flag;
    }
  }
  
  delayMicroseconds(1360); // Increased from 1000 for Sega Mega Drive original Arcade 6 Button Pad Controller MK-1653-50
}
 
void sendStates()
{
  for (int i = 0; i < sizeof(outputMap) / sizeof(output); i++)
  {
    int last = (lastState[outputMap[i].player] & outputMap[i].flag);
    int current = (currentState[outputMap[i].player] & outputMap[i].flag);
     
    if (last != current)
    {
      if (current == outputMap[i].flag)
      {
        Joystick.pressButton(outputMap[i].key);
      }
      else
      {
        Joystick.releaseButton(outputMap[i].key);
      }
    }
  }
  
  for (int i = 0; i < PLAYERS; i++)
  {
    lastState[i] = currentState[i];
  }
  Joystick.sendState();
}

Con la programación exitosa de nuestro Arduino Pro Micro, ahora solo debemos soldar los cables del mando a los pines del mismo y colocar el tubo termocontraíble. Al final de la publicación se encuentra el vídeo donde podemos verificar el correcto funcionamiento de nuestro mando modificado con conexión USB.

Para realizar la misma modificación en un mando de SNES el procedimiento es similar al descripto anteriormente.

(click para ampliar)

En primer lugar tomaremos el mando por el extremo del conector y cortaremos aproximadamente 10cm de cable como observamos en la siguiente imagen:

(click para ampliar)

Ahora debemos identificar y establecer una relación entre los pines del conector y los colores de los cables para así conectarlos correctamente a nuestro Arduino Pro Micro. Como vemos en la imagen he utilizado un pequeño alfiler (que también podría ser un pequeño trozo de cable o un clip) para establecer la correspondencia. Desde luego el multímetro debe encontrarse seteado para medición de continuidad, prueba de diodos o un valor óhmico lo más bajo posible.

(click para ampliar)

Esta prueba la llevaremos a cabo con la ayuda de la siguiente imagen y tabla.

(Vista frontal del conector SNES 7 pines bajo prueba)

Pin SNES 7
Descripción
Pin Arduino Pro Micro
Color (*)
1 5V VCC Blanco
2 Data Clock 6 Azul
3 Data Latch 7 Amarillo
4 Serial Data 5 Rojo
5 NC
6 NC
7 GND GND Marrón

(*) Los colores pueden variar.

Habiendo establecido exitosamente la relación entre los pines del conector SNES 7 y los colores de los cables, procederemos a programar nuestro Arduino Pro Micro dejando como último paso el soldado de los cables del mando a los pines de nuestro Arduino.

#include <Joystick.h>

// Create Joystick
Joystick_ Joystick;

// Controller Buttons
#define SNES_B       1      //000000000001
#define SNES_Y       2      //000000000010
#define SNES_SELECT  4      //000000000100
#define SNES_START   8      //000000001000
#define SNES_UP      16     //000000010000
#define SNES_DOWN    32     //000000100000
#define SNES_LEFT    64     //000001000000
#define SNES_RIGHT   128    //000010000000
#define SNES_A       256    //000100000000
#define SNES_X       512    //001000000000
#define SNES_L       1024   //010000000000
#define SNES_R       2048   //100000000000

const int PIN_CLOCK = 6;
const int PIN_LATCH = 7;
const int PIN_DATA = 5; //12;

void setup(){
  Joystick.begin(false);
  
  pinMode(PIN_CLOCK, OUTPUT);
  digitalWrite(PIN_CLOCK, HIGH);
  pinMode(PIN_LATCH, OUTPUT);
  digitalWrite(PIN_LATCH, LOW);
  pinMode(PIN_DATA, INPUT_PULLUP);
}

void loop(){
  uint16_t state = 0;
    // 12us latch
    digitalWrite(PIN_LATCH, HIGH);
    delayMicroseconds(12);
    digitalWrite(PIN_LATCH, LOW);
    delayMicroseconds(6);
    // Retrieve 4021s sixteen bits of data
    for(int i = 0; i < 16; i++){
        digitalWrite(PIN_CLOCK, LOW);
        delayMicroseconds(6);
        state |= digitalRead(PIN_DATA) << i;
        digitalWrite(PIN_CLOCK, HIGH);
        delayMicroseconds(6);
    }

  // buttons
  SNES_B & ~state ? Joystick.pressButton(0) : Joystick.releaseButton(0);
  SNES_Y & ~state ? Joystick.pressButton(1) : Joystick.releaseButton(1);
  SNES_SELECT & ~state ? Joystick.pressButton(2) : Joystick.releaseButton(2);
  SNES_START & ~state ? Joystick.pressButton(3) : Joystick.releaseButton(3);
  SNES_A & ~state ? Joystick.pressButton(4) : Joystick.releaseButton(4);
  SNES_X & ~state ? Joystick.pressButton(5) : Joystick.releaseButton(5);
  SNES_L & ~state ? Joystick.pressButton(6) : Joystick.releaseButton(6);
  SNES_R & ~state ? Joystick.pressButton(7) : Joystick.releaseButton(7);

  // 360° Hat Switch 0
  Joystick.setHatSwitch(0, -1); // release
  if (SNES_UP & ~state) Joystick.setHatSwitch(0, 0);
  if (SNES_RIGHT & ~state) Joystick.setHatSwitch(0, 90);
  if (SNES_DOWN & ~state) Joystick.setHatSwitch(0, 180);
  if (SNES_LEFT & ~state) Joystick.setHatSwitch(0, 270);
  if (SNES_UP & ~state && SNES_RIGHT & ~state) Joystick.setHatSwitch(0, 45);
  if (SNES_DOWN & ~state && SNES_RIGHT & ~state) Joystick.setHatSwitch(0, 135);
  if (SNES_DOWN & ~state && SNES_LEFT & ~state) Joystick.setHatSwitch(0, 225);
  if (SNES_UP & ~state && SNES_LEFT & ~state) Joystick.setHatSwitch(0, 315);
  
  Joystick.sendState();
  delay(25);
}

Con la programación exitosa de nuestro Arduino Pro Micro, ahora procederemos a fijar con adhesivo de contacto o silicona caliente el cable de nuestro mando a la parte trasera de nuestro Arduino como observamos en la siguiente imagen:

(click para ampliar)

Ahora soldaremos los cables del mando a los pines de nuestro Arduino Pro Micro.

(click para ampliar)

(click para ampliar)

Como último paso solo nos resta colocar el tubo termocontraíble.

(click para ampliar)

(click para ampliar)

A continuación se encuentra el vídeo donde podemos verificar el correcto funcionamiento de nuestro mando modificado con conexión USB.

Anuncios

El vúmetro es un dispositivo indicador en equipos de audio para mostrar el nivel de señal en unidades de volumen, también es llamado “indicador del volumen”.

Consta de un instrumento de bobina móvil o galvanómetro con una balística (amortiguamiento) determinada, alimentado por medio de un rectificador de onda completa que se conecta a la línea de audio mediante una resistencia en serie. No necesita más fuente de energía para su funcionamiento que la señal de entrada. Esencialmente permite visualizar las variaciones de la tensión en la señal de audio, rectificándola y obteniendo el valor medio. Este se obtiene por la balística del instrumento usado, no por una integración capacitiva. Lo que exige que el galvanómetro de un vúmetro no sea fabricado igual que otros tipos de medidores eléctricos (como los amperímetros, voltímetros, etc.) para conformar el estándar SVI (Standard Volume Indicator).

El vúmetro no fue diseñado para medir explícitamente la tensión de la señal, sino para que los usuarios tuvieran una referencia u objetivo de 0 VU, identificado como el 100% o 0 decibelios, en telefonía y en la modulación de los transmisores de la época, por lo que no era muy importante que el dispositivo no fuera extremadamente lineal o preciso para bajos niveles. En efecto, la escala de -20 VU a +3 VU, con 0 VU al 70% de la escala, fue limitado por la tecnología de la época. La mitad superior de la escala solo cubre 6 dB, permitiendo ajustar con precisión solo los niveles alrededor de 0 VU.

Se ha reemplazado en muchos equipos el tradicional vúmetro de aguja por indicadores luminosos con LEDs. Además del nivel ponderado, algunos vúmetros digitales también muestran los picos o máximos. Como regla general, los niveles de grabación deben ser tales que no superen el área roja más allá de 0 VU, o solo en raras ocasiones. Si el volumen de grabación es demasiado alto, la calidad del sonido y respuesta en frecuencia es generalmente más pobre y los efectos de saturación y recorte pueden ser especialmente problemáticos para un sistema de grabación digital. Por el contrario si el nivel es demasiado bajo, los niveles de ruido serán altos en relación a la señal principal que se está grabando.

Actualmente, la mayoría de las computadoras utilizan pantallas LED o LCD para indicar el nivel de sonido, por otro lado, dan un aspecto colorido y dramático.
Este proyecto consta de una visualización con memoria de pico que muestra gráficamente la señal de audio estéreo que ingresa a través de dos entradas analógicas de nuestra placa Arduino.
Tiene múltiples aplicaciones, ya que podría ser un indicador de nivel de audio, control de nivel de líquido, voltímetro o amperímetro en una fuente de alimentación, indicador de temperatura, medición de una señal de RF, etc.

El diagrama esquemático del vúmetro estéreo se observa en la siguiente imagen:

(click para ampliar)

Lista de Componentes
1 Display LCD 16×2 con controlador Hitachi HD44780 o compatible
2 Capacitores Electrolíticos 1uF 63V
2 Diodos Rectificadores 1N4001
1 Resistencia 3K3Ω 0.25W
1 Resistencia 220Ω 0.25W
2 Resistencias 330KΩ 0.25W

#include <LiquidCrystal.h>

#define IN_LEFT    A4  // analog input for left channel
#define IN_RIGHT   A5  // analog input for right channel

#define T_REFRESH    100
#define T_PEAKHOLD   (3 * T_REFRESH)

LiquidCrystal lcd(7,  // RS
                  8,  // E
                  3,  // DB4
                  4,  // DB5
                  5,  // DB6
                  6   // DB7
                  );

byte  fill[6] = {0x20, 0x00, 0x01, 0x02, 0x03, 0xFF};
byte  peak[7] = {0x20, 0x00, 0x04, 0x05, 0x06, 0x07, 0x20};
byte block[8][8]=
{
  {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10},
  {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18},
  {0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C},
  {0x1E, 0x1E, 0x1E, 0x1E, 0x1E, 0x1E, 0x1E, 0x1E},

  {0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08},
  {0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04},
  {0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02},
  {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},
};

int lmax[2];
int dly[2];

long lastT = 0;

void  bar(int row, int lev) {

    lcd.setCursor(0, row);
    lcd.write(row ? 'R' : 'L');

    for(int i = 1; i < 16; i++) {
        int f = constrain(lev-i*5, 0, 5);
        int p = constrain(lmax[row]-i*5, 0, 6);
        if(f)
            lcd.write(fill[f]);
        else
            lcd.write(peak[p]);
    }

    if(lev > lmax[row]) {
        lmax[row] = lev;
        dly[row]  = -(T_PEAKHOLD) / T_REFRESH;
    }
    else {
        if(dly[row] > 0)
            lmax[row] -= dly[row];

        if(lmax[row] < 0)
            lmax[row] = 0;
        else
            dly[row]++;
    }
}

void  setup() {

    byte fillbar[8] = {
    B00000,
    B01000,
    B01100,
    B01010,
    B01001,
    B01010,
    B01100,
    B01000
    };

    byte mark[8] = {
    B00000,
    B01010,
    B10001,
    B10101,
    B10001,
    B01010,
    B00000,
    B00000
    };

    lcd.begin(16, 2);

    lcd.createChar(0, fillbar);
    lcd.createChar(1, mark);

    lcd.setCursor(3, 0);
    lcd.print("JLM Sound");
    lcd.setCursor(12, 0);
    lcd.write(1);

    for(int i = 0; i < 16; i++) {
        lcd.setCursor(i, 1);
        lcd.write((byte)0);

        delay(125);
    }

    lcd.clear();

    for(int j = 0; j < 8; j++)
        lcd.createChar(j, block[j]);
}

void  loop() {

    if(millis() < lastT)
        return;

    lastT += T_REFRESH;

    int anL = map(sqrt(analogRead(IN_LEFT)*16), 0, 128, 0, 80);
    int anR = map(sqrt(analogRead(IN_RIGHT)*16), 0, 128, 0, 80);
    
    bar(0, anL);
    bar(1, anR);
}

Arduino es una plataforma prácticamente infinita para todo tipo de aplicaciones como lo hemos visto en este humilde blog de entre millones que existen en la web. En este espacio comenzamos con aplicaciones de Hacking, luego incursionamos en la fascinante disciplina de la Robótica y últimamente avanzamos sobre el increíble universo de los Videojuegos.

Anteriormente publicamos juegos (basados en la librería VGAx desarrollada por Sandro Maffiodo) como, por ejemplo:

También construimos juegos más sencillos basados simplemente en LEDs y pulsadores como

Y no hace mucho tiempo atrás comenzamos con la construcción de videojuegos utilizando matrices de LEDs

En esta ocasión construiremos un juego muy sencillo orientado a quienes recién se inician en este maravilloso mundo de los microcontroladores, particularmente en Arduino, y desean obtener resultados satisfactorios a corto plazo ya que no creo que haya alguna emoción más intensa para un inventor, que ver alguna de sus creaciones funcionando. Utilizaremos solamente un display LCD de 16 columnas 2 filas, y un pulsador.

El juego que crearemos pertenece al género “Endless Runner“, del inglés corredor infinito cuya definición es la siguiente:

Género donde el jugador debe avanzar de manera irremediable en una misma dirección, generalmente escapando de algún enemigo o peligro, y cuyo objetivo es avanzar lo máximo posible antes de morir.

Generalmente las acciones principales son saltar y esquivar obstáculos, pero muchos juegos de este tipo incluyen también algún tipo de ataque, tanto cuerpo a cuerpo como con armas.

Desde la decáda de los 80’s con juegos como “Jump Bug” o “Moon Patrol” hasta el día de hoy se encuentran de manera casi omnipresente en nuestras vidas. Como ejemplo inmediato tenemos el mundialmente conocido navegador web del gigante Google, “Chrome“, que a partir de “Chrome Canary” incluye un divertido juego “endless runner” en el cual controlamos a un simpático T-Rex. Aunque parezca increíble existen en la web competencias de mayor puntaje obtenido en el juego. Meses atrás un gigante del entretenimiento, Netflix, ha incluido un juego “endless runner” en el cual podemos seleccionar personajes como Pablo Escobar o Marco Polo.

El diagrama esquemático de nuestro divertido y sencillo juego se observa en la siguiente imagen:

(click para ampliar)

Lista de Componentes
1 Display LCD 16×2 con controlador Hitachi HD44780 o compatible
1 Resistencia 3K3Ω 0.25W
1 Resistencia 220Ω 0.25W
1 Pulsador N.A. o Push-Button N.A.

#include <LiquidCrystal.h>

#define PIN_BUTTON 2

#define SPRITE_RUN1 1
#define SPRITE_RUN2 2
#define SPRITE_JUMP 3
#define SPRITE_JUMP_UPPER '.'         // Use the '.' character for the head
#define SPRITE_JUMP_LOWER 4
#define SPRITE_TERRAIN_EMPTY ' '      // User the ' ' character
#define SPRITE_TERRAIN_SOLID 5
#define SPRITE_TERRAIN_SOLID_RIGHT 6
#define SPRITE_TERRAIN_SOLID_LEFT 7

#define HERO_HORIZONTAL_POSITION 1    // Horizontal position of hero on screen

#define TERRAIN_WIDTH 16
#define TERRAIN_EMPTY 0
#define TERRAIN_LOWER_BLOCK 1
#define TERRAIN_UPPER_BLOCK 2

#define HERO_POSITION_OFF 0          // Hero is invisible
#define HERO_POSITION_RUN_LOWER_1 1  // Hero is running on lower row (pose 1)
#define HERO_POSITION_RUN_LOWER_2 2  //                              (pose 2)

#define HERO_POSITION_JUMP_1 3       // Starting a jump
#define HERO_POSITION_JUMP_2 4       // Half-way up
#define HERO_POSITION_JUMP_3 5       // Jump is on upper row
#define HERO_POSITION_JUMP_4 6       // Jump is on upper row
#define HERO_POSITION_JUMP_5 7       // Jump is on upper row
#define HERO_POSITION_JUMP_6 8       // Jump is on upper row
#define HERO_POSITION_JUMP_7 9       // Half-way down
#define HERO_POSITION_JUMP_8 10      // About to land

#define HERO_POSITION_RUN_UPPER_1 11 // Hero is running on upper row (pose 1)
#define HERO_POSITION_RUN_UPPER_2 12 //                              (pose 2)

LiquidCrystal lcd(7,  //RS
                  8,  //E
                  3,  //DB4
                  4,  //DB5
                  5,  //DB6
                  6   //DB7
                  );

char terrainUpper[TERRAIN_WIDTH + 1];
char terrainLower[TERRAIN_WIDTH + 1];
volatile boolean buttonPushed = false;

void initializeGraphics() {
	byte graphics[] = {
        // Run position 1
        B01100,
        B01100,
        B00000,
        B01110,
        B11100,
        B01100,
        B11010,
        B10011,
        // Run position 2
        B01100,
        B01100,
        B00000,
        B01100,
        B01100,
        B01100,
        B01100,
        B01110,
        // Jump
        B01100,
        B01100,
        B00000,
        B11110,
        B01101,
        B11111,
        B10000,
        B00000,
        // Jump lower
        B11110,
        B01101,
        B11111,
        B10000,
        B00000,
        B00000,
        B00000,
        B00000,
        // Ground
        B11111,
        B11111,
        B11111,
        B11111,
        B11111,
        B11111,
        B11111,
        B11111,
        // Ground right
        B00011,
        B00011,
        B00011,
        B00011,
        B00011,
        B00011,
        B00011,
        B00011,
        // Ground left
        B11000,
        B11000,
        B11000,
        B11000,
        B11000,
        B11000,
        B11000,
        B11000,
    };

    int i;

    // Skip using character 0, this allows lcd.print() to be used to
    // quickly draw multiple characters
    for (i = 0; i < 7; ++i) {
        lcd.createChar(i + 1, &graphics[i * 8]);
    }

    for (i = 0; i < TERRAIN_WIDTH; ++i) {
        terrainUpper[i] = SPRITE_TERRAIN_EMPTY;
        terrainLower[i] = SPRITE_TERRAIN_EMPTY;
    }
}

// Slide the terrain to the left in half-character increments
void advanceTerrain(char* terrain, byte newTerrain) {
    for (int i = 0; i < TERRAIN_WIDTH; ++i) {
        char current = terrain[i];
        char next = (i == TERRAIN_WIDTH-1) ? newTerrain : terrain[i+1];

        switch (current) {
            case SPRITE_TERRAIN_EMPTY:
                terrain[i] = (next == SPRITE_TERRAIN_SOLID) ? SPRITE_TERRAIN_SOLID_RIGHT : SPRITE_TERRAIN_EMPTY;
            break;

            case SPRITE_TERRAIN_SOLID:
                terrain[i] = (next == SPRITE_TERRAIN_EMPTY) ? SPRITE_TERRAIN_SOLID_LEFT : SPRITE_TERRAIN_SOLID;
            break;

            case SPRITE_TERRAIN_SOLID_RIGHT:
                terrain[i] = SPRITE_TERRAIN_SOLID;
            break;

            case SPRITE_TERRAIN_SOLID_LEFT:
                terrain[i] = SPRITE_TERRAIN_EMPTY;
            break;
        }
    }
}

boolean drawHero(byte position, char* terrainUpper, char* terrainLower, unsigned int score) {
    boolean collide = false;
    char upperSave = terrainUpper[HERO_HORIZONTAL_POSITION];
    char lowerSave = terrainLower[HERO_HORIZONTAL_POSITION];
    byte upper, lower;

    switch (position) {
        case HERO_POSITION_OFF:
            upper = lower = SPRITE_TERRAIN_EMPTY;
        break;

        case HERO_POSITION_RUN_LOWER_1:
            upper = SPRITE_TERRAIN_EMPTY;
            lower = SPRITE_RUN1;
        break;

        case HERO_POSITION_RUN_LOWER_2:
            upper = SPRITE_TERRAIN_EMPTY;
            lower = SPRITE_RUN2;
        break;

        case HERO_POSITION_JUMP_1:

        case HERO_POSITION_JUMP_8:
            upper = SPRITE_TERRAIN_EMPTY;
            lower = SPRITE_JUMP;
        break;

        case HERO_POSITION_JUMP_2:

        case HERO_POSITION_JUMP_7:
            upper = SPRITE_JUMP_UPPER;
            lower = SPRITE_JUMP_LOWER;
        break;

        case HERO_POSITION_JUMP_3:

        case HERO_POSITION_JUMP_4:

        case HERO_POSITION_JUMP_5:

        case HERO_POSITION_JUMP_6:
            upper = SPRITE_JUMP;
            lower = SPRITE_TERRAIN_EMPTY;
        break;

        case HERO_POSITION_RUN_UPPER_1:
            upper = SPRITE_RUN1;
            lower = SPRITE_TERRAIN_EMPTY;
        break;

        case HERO_POSITION_RUN_UPPER_2:
            upper = SPRITE_RUN2;
            lower = SPRITE_TERRAIN_EMPTY;
        break;
    }

    if (upper != ' ') {
        terrainUpper[HERO_HORIZONTAL_POSITION] = upper;
        collide = (upperSave == SPRITE_TERRAIN_EMPTY) ? false : true;
    }

    if (lower != ' ') {
        terrainLower[HERO_HORIZONTAL_POSITION] = lower;
        collide |= (lowerSave == SPRITE_TERRAIN_EMPTY) ? false : true;
    }

    byte digits = (score > 9999) ? 5 : (score > 999) ? 4 : (score > 99) ? 3 : (score > 9) ? 2 : 1;

    // Draw the scene
    terrainUpper[TERRAIN_WIDTH] = '\0';
    terrainLower[TERRAIN_WIDTH] = '\0';
    char temp = terrainUpper[16-digits];
    terrainUpper[16-digits] = '\0';
    lcd.setCursor(0,0);
    lcd.print(terrainUpper);
    terrainUpper[16-digits] = temp;
    lcd.setCursor(0,1);
    lcd.print(terrainLower);

    lcd.setCursor(16 - digits,0);
    lcd.print(score);

    terrainUpper[HERO_HORIZONTAL_POSITION] = upperSave;
    terrainLower[HERO_HORIZONTAL_POSITION] = lowerSave;

    return collide;
}

// Handle the button push as an interrupt
void buttonPush() {
    buttonPushed = true;
}

void setup() {
    pinMode(PIN_BUTTON, INPUT_PULLUP);

    // Digital pin 2 maps to interrupt 0
    attachInterrupt(0, buttonPush, FALLING);

    initializeGraphics();

    lcd.begin(16, 2);
}

void loop(){
    static byte heroPos = HERO_POSITION_RUN_LOWER_1;
    static byte newTerrainType = TERRAIN_EMPTY;
    static byte newTerrainDuration = 1;
    static boolean playing = false;
    static boolean blink = false;
    static unsigned int distance = 0;

    if (!playing) {
        drawHero((blink) ? HERO_POSITION_OFF : heroPos, terrainUpper, terrainLower, distance >> 3);

        if (blink) {
        lcd.setCursor(0,0);
        lcd.print("Press Start");
        }

        delay(250);
        blink = !blink;

        if (buttonPushed) {
            initializeGraphics();
            heroPos = HERO_POSITION_RUN_LOWER_1;
            playing = true;
            buttonPushed = false;
            distance = 0;
        }

        return;
    }

    // Shift the terrain to the left
    advanceTerrain(terrainLower, newTerrainType == TERRAIN_LOWER_BLOCK ? SPRITE_TERRAIN_SOLID : SPRITE_TERRAIN_EMPTY);
    advanceTerrain(terrainUpper, newTerrainType == TERRAIN_UPPER_BLOCK ? SPRITE_TERRAIN_SOLID : SPRITE_TERRAIN_EMPTY);

    // Make new terrain to enter on the right
    if (--newTerrainDuration == 0) {
        if (newTerrainType == TERRAIN_EMPTY) {
            newTerrainType = (random(3) == 0) ? TERRAIN_UPPER_BLOCK : TERRAIN_LOWER_BLOCK;
            newTerrainDuration = 2 + random(10);
        } else {
            newTerrainType = TERRAIN_EMPTY;
            newTerrainDuration = 10 + random(10);
        }
    }

    if (buttonPushed) {
        if (heroPos <= HERO_POSITION_RUN_LOWER_2)
            heroPos = HERO_POSITION_JUMP_1;

        buttonPushed = false;
    }

    if (drawHero(heroPos, terrainUpper, terrainLower, distance >> 3)) {
        playing = false; // The hero collided with something. Too bad.
    } else {
        if (heroPos == HERO_POSITION_RUN_LOWER_2 || heroPos == HERO_POSITION_JUMP_8) {
            heroPos = HERO_POSITION_RUN_LOWER_1;
        } else if ((heroPos >= HERO_POSITION_JUMP_3 && heroPos <= HERO_POSITION_JUMP_5) && terrainLower[HERO_HORIZONTAL_POSITION] != SPRITE_TERRAIN_EMPTY) {
            heroPos = HERO_POSITION_RUN_UPPER_1;
        } else if (heroPos >= HERO_POSITION_RUN_UPPER_1 && terrainLower[HERO_HORIZONTAL_POSITION] == SPRITE_TERRAIN_EMPTY) {
            heroPos = HERO_POSITION_JUMP_5;
        } else if (heroPos == HERO_POSITION_RUN_UPPER_2) {
            heroPos = HERO_POSITION_RUN_UPPER_1;
        } else {
            ++heroPos;
        }

        ++distance;
    }

    delay(100);
}

El vúmetro es un dispositivo indicador en equipos de audio para mostrar el nivel de señal en unidades de volumen, también es llamado “indicador del volumen”.

Consta de un instrumento de bobina móvil o galvanómetro con una balística (amortiguamiento) determinada, alimentado por medio de un rectificador de onda completa que se conecta a la línea de audio mediante una resistencia en serie. No necesita más fuente de energía para su funcionamiento que la señal de entrada. Esencialmente permite visualizar las variaciones de la tensión en la señal de audio, rectificándola y obteniendo el valor medio. Este se obtiene por la balística del instrumento usado, no por una integración capacitiva. Lo que exige que el galvanómetro de un vúmetro no sea fabricado igual que otros tipos de medidores eléctricos (como los amperímetros, voltímetros, etc.) para conformar el estándar SVI (Standard Volume Indicator).

El vúmetro no fue diseñado para medir explícitamente la tensión de la señal, sino para que los usuarios tuvieran una referencia u objetivo de 0 VU, identificado como el 100% o 0 decibelios, en telefonía y en la modulación de los transmisores de la época, por lo que no era muy importante que el dispositivo no fuera extremadamente lineal o preciso para bajos niveles. En efecto, la escala de -20 VU a +3 VU, con 0 VU al 70% de la escala, fue limitado por la tecnología de la época. La mitad superior de la escala solo cubre 6 dB, permitiendo ajustar con precisión solo los niveles alrededor de 0 VU.

Se ha reemplazado en muchos equipos el tradicional vúmetro de aguja por indicadores luminosos con LEDs. Además del nivel ponderado, algunos vúmetros digitales también muestran los picos o máximos. Como regla general, los niveles de grabación deben ser tales que no superen el área roja más allá de 0 VU, o solo en raras ocasiones. Si el volumen de grabación es demasiado alto, la calidad del sonido y respuesta en frecuencia es generalmente más pobre y los efectos de saturación y recorte pueden ser especialmente problemáticos para un sistema de grabación digital. Por el contrario si el nivel es demasiado bajo, los niveles de ruido serán altos en relación a la señal principal que se está grabando.

Actualmente, la mayoría de las computadoras utilizan pantallas LED o LCD para indicar el nivel de sonido, por otro lado, dan un aspecto colorido y dramático.
Este proyecto consta de 6 visualizaciones diferentes que muestran gráficamente la señal de audio estéreo que ingresa a través de dos entradas analógicas del PIC.
Tiene múltiples aplicaciones, ya que podría ser un indicador de nivel de audio, control de nivel de líquido, voltímetro o amperímetro en una fuente de alimentación, indicador de temperatura, medición de una señal de RF, etc.

Datasheet PIC16F877A

El diagrama esquemático del vúmetro estéreo se observa en la siguiente imagen:

(click para ampliar)

Lista de Componentes
1 Microcontrolador PIC16F877A
1 Display LCD 16×2 con controlador Hitachi HD44780 o compatible
1 Cristal de Cuarzo 20MHz
2 Capacitores Cerámicos 27pF 50V
2 Capacitores Electrolíticos 1uF 63V
2 Diodos Rectificadores 1N4001
1 Trimpot horizontal multivuelta 10K
1 Resistencia 10KΩ 0.25W
1 Resistencia 4K7Ω 0.25W
2 Resistencias 330KΩ 0.25W
1 Pulsador N.A. o Push-Button N.A.

El código fuente del firmware del microcontrolador está escrito en el lenguaje PICBasic. Puede ser compilado sin ningún inconveniente utilizando la última versión del compilador PICBasic Pro Trial Version 3.0.7.1 y cargar el firmware en el PIC16F877A utilizando el programador PICKit 3 v3.01.

#CONFIG
        __config _HS_OSC & _WDT_OFF & _CP_OFF & _BOREN_OFF & _LVP_OFF

#ENDCONFIG

' *******************************************************************************
DEFINE OSC 20     ' Oscillator 20 MHz
' *******************************************************************************
ADCON1 = 00000000      ' Set all PORTA and PORTE as analog
PAUSE 500              ' Time to initiation of the LCD
DEFINE LCD_DREG PORTB  ' LCD data PORT B ships
DEFINE LCD_DBIT 4      ' LCD uses less than 0 or greater Bit 4
DEFINE LCD_RSREG PORTB ' LCD RS in the PORTB
DEFINE LCD_RSBIT 0     ' LCD RS PORTB.0
DEFINE LCD_EREG PORTB  ' LCD E in the PORTB
DEFINE LCD_EBIT 1      ' LCD E PORTB.1
DEFINE LCD_BITS 4      ' LCD using 4 or 8 bits for data
DEFINE LCD_LINES 2     ' Number of lines lcd
' *******************************************************************************
DEFINE ADC_BITS 8      ' Result of 8 or 10-bit ADC
DEFINE ADC_CLOCK 3     ' Set clock
DEFINE ADC_SAMPLEUS 50 ' Set sampling time in microseconds
' *******************************************************************************
CHANNEL var BYTE             ' Variable name
LINE    VAR BYTE             ' Variable name
COUNTER VAR BYTE             ' Variable name
REST    VAR BYTE             ' Variable name
Mark1   VAR BIT              ' Variable name
Mark2  var BYTE              ' Variable name
pushbutton    Var PORTB.2    ' button in the PORTB.2
TRISA =  %11111111
TRISB =  %00000100
TRISC =  %00000000

' *******************************************************************************
LCDOUT 254,64,1,2,5,5,5,5,2,1                      ' position CGRAM 0
LCDOUT 254,72,24,4,26,2,2,26,4,24                  ' 1 position CGRAM
LCDOUT $FE,1                                       ' Clear screen
' *******************************************************************************
GRAF1 :
Mark2 = 1
LCDOUT 254,64 , 0, 16, 16 , 16, 16 , 16, 16 , 0 ' 0 position CGRAM
LCDOUT 254,72 , 0, 24, 24 , 24, 24, 24 , 24, 0  ' 1 position CGRAM
LCDOUT 254,80 , 0, 28, 28 , 28, 28, 28 , 28, 0  ' CGRAM Position 2
LCDOUT 254,88 , 0, 30, 30 , 30, 30, 30 , 30, 0  ' 3 position CGRAM
LCDOUT 254,96 , 0, 31, 31 , 31, 31, 31 , 31, 0  ' 4 position CGRAM
PAUSE 300
GOTO BAR
' *******************************************************************************
GRAF2 :
Mark2 = 2
LCDOUT 254,64 , 0, 24, 24 , 24, 24, 24 , 24, 0 ' 0 position CGRAM
LCDOUT 254,72 , 0, 24, 24 , 24, 24, 24 , 24, 0 ' 1 position CGRAM
LCDOUT 254,80 , 0, 27, 27 , 27, 27, 27 , 27, 0 ' CGRAM Position 2
LCDOUT 254,88 , 0, 27, 27 , 27, 27, 27 , 27, 0 ' 3 position CGRAM
LCDOUT 254,96 , 0, 27, 27 , 27, 27, 27 , 27, 0 ' 4 position CGRAM
PAUSE 300
GOTO BAR
' *******************************************************************************
GRAF3 :
Mark2 = 3
LCDOUT 254,64 , 0, 0 , 0, 16, 16 , 0, 0 , 0 ' 0 position CGRAM
LCDOUT 254,72 , 0, 0 , 0, 24, 24 , 0, 0 , 0 ' 1 position CGRAM
LCDOUT 254,80 , 0, 0 , 0, 28, 28 , 0, 0 , 0 ' 2 Position CGRAM 
LCDOUT 254,88 , 0, 0 , 0, 30, 30 , 0, 0 , 0 ' 3 position CGRAM
LCDOUT 254,96 , 0, 0 , 0, 31, 31 , 0, 0 , 0 ' 4 position CGRAM
PAUSE 300
GOTO BAR
' *******************************************************************************
GRAF4 :
Mark2 = 4
LCDOUT 254,64 , 0, 16, 16 , 16, 16 , 16, 16 , 0 ' 0 position CGRAM
LCDOUT 254,72 , 0, 16, 16 , 16, 16 , 16, 16 , 0 ' 1 position CGRAM
LCDOUT 254,80 , 0, 20, 20, 20 , 20, 20 , 20, 0  ' 2 Position CGRAM  
LCDOUT 254,88 , 0, 20, 20, 20 , 20, 20 , 20, 0  ' 3 position CGRAM
LCDOUT 254,96 , 0, 21, 21 , 21, 21, 21 , 21, 0  ' 4 position CGRAM
PAUSE 300
GOTO BAR
' *******************************************************************************
GRAF5 :
Mark2 = 5
LCDOUT 254,64 , 0, 0 , 0, 4 , 0, 0 , 0, 0    ' 0 position CGRAM
LCDOUT 254,72 , 0, 0 , 4, 14 , 4, 0 , 0, 0   ' 1 Position CGRAM
LCDOUT 254,80 , 0, 0 , 14, 14 , 14, 0, 0, 0  ' 2 Position CGRAM 
LCDOUT 254,88 , 0, 4 , 14, 31 , 14, 4, 0, 0  ' 3 position CGRAM
LCDOUT 254,96 , 0, 14, 31, 31, 31 , 14, 0, 0 ' 4 position CGRAM
PAUSE 300
GOTO BAR
' *******************************************************************************
GRAF6 :
Mark2 = 6
LCDOUT 254,64,0,14,31,31,31,14,0,0           ' 0 position CGRAM
LCDOUT 254,72,0,14,31,31,31,14,0,0           ' 1 position CGRAM
LCDOUT 254,80,0,14,31,31,31,14,0,0           ' 2 Position CGRAM
LCDOUT 254,88,0,14,31,31,31,14,0,0           ' 3 position CGRAM
LCDOUT 254,96,0,0,0,31,0,0,0,0               ' 4 position CGRAM
PAUSE 300
' *******************************************************************************
BAR :
IF Mark1 = 1 THEN                             ' If true
LINE = $2: ADCIN 7, CHANNEL: Mark1 = 0        ' 1st line LCD shows L channel
ELSE                                          ' If it is not
LINE = $c0: ADCIN 6, CHANNEL: Mark1 = 1       ' 2nd Line LCD shows R channel
ENDIF 'End of the comparison
' *******************************************************************************
REST = ( CHANNEL // 5 )    ' Operation subtracted from the division
LCDOUT $FE,LINE            ' Start writing in the LCD
FOR COUNTER = 1 TO(CHANNEL/5) 'Count forward
LCDOUT 4                   ' 4 position CGRAM Print
NEXT COUNTER               ' Returns to COUNTER
IF REST = 1 THEN  LCDOUT 0 ' Print CGRAM position 0
IF REST = 2 THEN  LCDOUT 1 ' Print CGRAM Position 1
IF REST = 3 THEN  LCDOUT 2 ' Prints 2 position CGRAM
IF REST = 4 THEN  LCDOUT 3 ' 3 position CGRAM Print
LCDOUT 20, 20 , 20         ' Clearing 3 characters
' *******************************************************************************
IF (pushbutton = 1) and (Mark2 = 6) THEN GRAF1   '1 ° Viewing 
IF (pushbutton = 1) and (Mark2 = 1) THEN GRAF2   '2 ° Viewing
IF (pushbutton = 1) and (Mark2 = 2) THEN GRAF3   '3 ° Viewing 
IF (pushbutton = 1) and (Mark2 = 3) THEN GRAF4   '4 ° Viewing 
IF (pushbutton = 1) and (Mark2 = 4) THEN GRAF5   '5 ° Viewing 
IF (pushbutton = 1) and (Mark2 = 5) THEN GRAF6   '6 ° Viewing 
' *******************************************************************************
GOTO BAR
END

PICBasic Pro Trial Version 3.0.7.1 [incluye MPASM v8.90, Microcode Studio 5 (MCSX) para PBP v3, PBP 3.0.7.1]
Tamaño: 123.1MB
SHA1 Hash: C449786CFE50B26EB6818F9C35E10C718C36F6AD
Descarga

PICKit 3 v3.01
Tamaño: 8.4MB
SHA1 Hash: 34600B01B759F65DF993E1FA6408B4B3B3BA4AC9
Descarga

Además también se encuentra disponible para descargar el firmware ya compilado, listo para cargar en el microcontrolador.

VuMeter v1.0 HEX
Tamaño: 2KB
SHA1 Hash: 9D1F393C4EA3B561377988757898DAE7
Descarga

Arduino es una plataforma prácticamente infinita para todo tipo de aplicaciones como lo hemos visto en este humilde blog de entre millones que existen en la web. En este espacio comenzamos con aplicaciones de Hacking, luego incursionamos en la fascinante disciplina de la Robótica y últimamente avanzamos sobre el increíble universo de los Videojuegos.

Anteriormente publicamos juegos (basados en la librería VGAx desarrollada por Sandro Maffiodo) como, por ejemplo:

También construimos juegos más sencillos basados simplemente en LEDs y pulsadores como

Y no hace mucho tiempo atrás comenzamos con la construcción de videojuegos utilizando matrices de LEDs

En esta ocasión continuaremos con la construcción de juegos utilizando matrices de LEDs controladas por el circuito integrado MAX7219.

Tetris es un videojuego de puzzle originalmente diseñado y programado por Alekséi Pázhitnov en la Unión Soviética. Fue lanzado el 6 de junio de 1984, mientras trabajaba para el Centro de Computación Dorodnitsyn de la Academia de Ciencias de la Unión Soviética en Moscú, RSFS de Rusia. Su nombre deriva del prefijo numérico griego tetra- (todas las piezas del juego, conocidas como Tetrominós que contienen cuatro segmentos) y del tenis, el deporte favorito de Pázhitnov.

En el Tetris se juega con los tetrominós, el caso especial de cuatro elementos de poliominós. Los poliominós se han utilizado en los rompecabezas populares por lo menos desde 1907, y el nombre fue dado por el matemático Solomon W. Golomb en 1953. Sin embargo, incluso la enumeración de los pentominós data de la antigüedad.

El juego (o una de sus muchas variantes) está disponible para casi cada consola de videojuegos y sistemas operativos de PC, así como en dispositivos tales como las calculadoras gráficas, teléfonos móviles, reproductores de multimedia portátiles, PDAs, reproductores de música en red e incluso como huevo de pascua en productos no mediáticos como los osciloscopios. También ha inspirado servicios de mesa y ha sido jugado en los costados de varios edificios, manteniendo el récord de ser el juego completamente funcional más grande del mundo gracias al esfuerzo de estudiantes holandeses en 1995 que iluminaron 15 pisos del Departamento de Ingeniería Eléctrica en la Universidad Técnica de Delft.

Mientras que las versiones de Tetris se vendieron para una amplia gama de plataformas de ordenadores domésticos de los años 1980, fue la muy exitosa versión portátil para la Game Boy lanzada en 1989 que estableció al juego como uno de los más populares de todos los tiempos. La edición número 100 del Electronic Gaming Monthly tuvo al Tetris en el primer lugar como el “mejor juego de todos los tiempos”. En 2007, Tetris ocupó el segundo lugar en los “100 mejores videojuegos de todos los tiempos” para IGN. Ha vendido más de 70 millones de copias. En enero de 2010, se anunció que el Tetris ha vendido más de 100 millones de unidades para teléfonos celulares (móviles) sólo desde el año 2005.

Efectos mentales de Tetris

De acuerdo con el Dr. Richard Haier, jugar al Tetris de forma prolongada puede llevar a una actividad cerebral más eficiente durante el juego.

La primera vez que se juega al Tetris, aumentan la función y actividad cerebral, incrementándose también el consumo de energía y glucosa por parte de este. A medida que el jugador de Tetris se vuelve más hábil, el cerebro reduce su consumo de energía y glucosa, indicando una actividad cerebral más eficiente para el juego. Jugar al Tetris de forma moderada (media hora al día por un período de tres meses) incrementa las funciones cognoscitivas tales como “pensamiento crítico, razonamiento, procesamiento del lenguaje”, elevándose también el espesor de la corteza cerebral.

El juego puede provocar que se imaginen combinaciones de Tetris de forma involuntaria aun cuando no se esté jugando (el llamado Efecto Tetris), aunque esto puede ocurrir con cualquier videojuego o situación real que proyecte las imágenes o escenarios de forma repetida, tales como rompecabezas.

La Matriz de LEDs

Una matriz LEDs es un display formado por múltiples LEDs en distribución rectangular. Existen distintos tamaños, siendo el más habitual los cuadrados de 8×8 LEDs.
Podemos combinar varios módulos para formar un display mucho mayor. En estos display podemos mostrar textos, dibujos o animaciones, como desplazar un texto (scroll).
Por lo demás, son diodos LEDs totalmente normales, organizados en forma de matriz, que tendremos que multiplexar para poder iluminar uno u otro punto.
Si los diodos se unen por el positivo, se dice que son matrices de Ánodo común, y si se une por el negativo decimos que son de Cátodo común. Dependiendo del fabricante podemos encontrar de ambos tipos.

Encender una matriz de LEDs directamente con Arduino requiere emplear una gran cantidad de pines, lo cual supondría un gran desperdicio de recursos. Por este motivo, lo normal es siempre utilizar un controlador específicamente diseñado para esta función. Un controlador habitualmente empleado por ser barato y sencillo es el circuito integrado MAX7219.

Circuito Integrado MAX7219

Encender una matriz de 8×8 LED requeriría 16 señales digitales y un trabajo constante del procesador para refrescar la imagen. Eso es una cantidad enorme de recursos para cualquier autómata, que estaríamos desperdiciando para simplemente encender un display.
Por este motivo, utilizamos el circuito integrado MAX7219 que está especialmente diseñado para encender displays de 7 segmentos y matrices de LEDs, liberando al procesador para hacer tareas mucho más valiosas y productivas.
La comunicación con el circuito integrado MAX7219 se realiza mediante el bus SPI por lo que sólo se requieren 3 pines de Arduino (SS, MOSI y SCK). Además, ni siquiera “ocupamos” en su totalidad estos pines, ya que con el mismo bus podemos controlar múltiples dispositivos.
Por último, las placas MAX7219 generalmente incorporan un puerto de entrada y salida, de forma que podemos combinar múltiples controladores sin ninguna dificultad.
MAX7219 Datasheet

El diagrama esquemático de esta variante de Arduino Tetris se observa en la siguiente imagen:

(click para ampliar)

Lista de Componentes
1 Resistencia 10KΩ 0.25W
5 Pulsadores N.A. o Push-Buttons N.A.
1 Transistor NPN 2SC1815
2 Módulos con Matrices de LEDs 8×8 con Circuito Integrado MAX7219 c/u. Cátodo Común [Color Rojo en caso de aplicar Red Mod]
1 Buzzer Pasivo 5V
1 Placa Arduino Nanino
Librería LedControl desarrollada por wayoda

#include <LedControl.h>

LedControl lc = LedControl(12, 11, 10, 2); // (dataPin, clockPin, csPin, totalDevices)

int lc0[] = {0, 0, 0, 0, 0, 0, 0, 0};
int lc1[] = {0, 0, 0, 0, 0, 0, 0, 0};
long active[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
long screen[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int tmpCol = 0;


int figura = 0;
int figuraNext = 0;
int fromLeft = 0;
int fromRight = 0;
int angle = 0;
int colCheck = 0;
int moveCheck = 0;
int score = 0;
int started = 0;
int lcRows = 16;
int lcCols = 8;
int allLines = 0;
int currLines = 0;
int brickDelay = 0;
int defDelay = 500;
int level = 0;

boolean sound = true;
//Pinos

int rotate_button = 2;
int left_button   = 3;
int down_button   = 4;
int right_button  = 5;
int start_button  = 6;
int speaker_pin   = 7;
int sound_button  = 8;

byte X[8] =
{
  0b00000,
  0b10001,
  0b01010,
  0b00100,
  0b01010,
  0b10001,
  0b00000,
  0b00000
};

byte O[8] =
{
  0b00000,
  0b11111,
  0b11111,
  0b11111,
  0b11111,
  0b11111,
  0b00000,
  0b00000
};

byte L[8] =
{
  0b11000,
  0b11000,
  0b11000,
  0b11000,
  0b11000,
  0b11111,
  0b11111,
  0b00000
};

byte J[8] =
{
  0b00011,
  0b00011,
  0b00011,
  0b00011,
  0b00011,
  0b11111,
  0b11111,
  0b00000
};

byte T[8] =
{
  0b00000,
  0b00000,
  0b11111,
  0b11111,
  0b01110,
  0b01110,
  0b00000,
  0b00000
};

byte I[8] =
{
  0b01100,
  0b01100,
  0b01100,
  0b01100,
  0b01100,
  0b01100,
  0b01100,
  0b00000
};

byte Z[8] =
{
  0b00000,
  0b00000,
  0b11110,
  0b11110,
  0b01111,
  0b01111,
  0b00000,
  0b00000
};

byte S[8] =
{
  0b00000,
  0b00000,
  0b01111,
  0b01111,
  0b11110,
  0b11110,
  0b00000,
  0b00000
};

//Nuty
int length = 99;
char notes[] = "EbCDCbaaCEDCbbCDECaa DFAGFEECEDCbbCDECaa EbCDCbaaCEDCbbCDECaa DFAGFEECEDCbbCDECaa ECDbCab ECDbCEAJ ";
int beats[] =      // Som
{
  2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 2,
  2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 1,
  2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 2,
  2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 1,
  5, 5, 5, 5, 5, 5, 7, 2, 5, 5, 5, 5, 2, 2, 5, 5, 3
};
int tempo = 128;        // Tempo


void playTone(int tone, int duration) {
  for (long i = 0; i < duration * 1000L; i += tone * 2) {
    digitalWrite(speaker_pin, HIGH);
    delayMicroseconds(tone);
    digitalWrite(speaker_pin, LOW);
    delayMicroseconds(tone);
  }
}


void playNote(char note, int duration) {
  char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' , 'D', 'E', 'F', 'G', 'J', 'A', 'B'};
  int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956, 850, 760, 716, 637, 603, 568, 507 };

  for (int i = 0; i < 14; i++) {
    if (names[i] == note) {
      playTone(tones[i], duration);
    }
  }
}


void updateColumn(int colnum)
{
    lc0[colnum] = active[colnum] >> (lcRows / 2);
    lc1[colnum] = active[colnum];
    lc.setColumn(0,colnum,(screen[colnum] >> (lcRows / 2)) | lc0[colnum]);
    lc.setColumn(1,colnum,screen[colnum] | lc1[colnum]);
}



void buttonDelay(int bdelay)
{
    if(brickDelay > bdelay)
    {
        brickDelay -= bdelay;
    }
    delay(bdelay);
}


void splashScreen()
{
     int up[] =
     {
         B11101110,   //   o o o   o o o
         B01001000,   //     o     o
         B01001100,   //     o     o o
         B01001000,   //     o     o
         B01001110,   //     o     o o o
         B00000000,   //
         B11101110,   //   o o o   o o o
         B01001010    //     o     o   o
     };

     int down[] =
     {
         B01001100,   //     o     o o
         B01001010,   //     o     o   o
         B01001001,   //     o     o     o
         B00000000,   //
         B01000111,   //     o       o o o
         B01000100,   //     o       o
         B01000010,   //     o         o
         B01001110    //     o     o o o
     };

     for(int rownum = 0; rownum < 8; rownum++)
     {
         lc.setRow(0,rownum,up[rownum]);
         lc.setRow(1,rownum,down[rownum]);
     }
}


void setup() {
  pinMode(speaker_pin,  OUTPUT);
  pinMode(rotate_button,INPUT_PULLUP);
  pinMode(down_button,  INPUT_PULLUP);
  pinMode(right_button, INPUT_PULLUP);
  pinMode(left_button,  INPUT_PULLUP);
  pinMode(start_button, INPUT_PULLUP);
  pinMode(sound_button, INPUT_PULLUP);

  lc.shutdown(0,false);
  lc.shutdown(1,false);

  lc.setIntensity(0,5);
  lc.setIntensity(1,5);

  lc.clearDisplay(0);
  lc.clearDisplay(1);
  Serial.begin(9600);

  randomSeed(analogRead(0));
}


//LOOP
void loop()
{



 if(started == 0)
 {
     splashScreen();

     for (int i = 0; i < length; i++)
     {

 if(digitalRead(sound_button) == LOW)
 {
  sound =! sound;
  delay(300);
  }

         if(digitalRead(start_button) == LOW)
         {
             started = 1;
             break;
         }
         if (notes[i] == ' ')
         {
             delay(beats[i] * tempo);   //Pausa
         }
         else
         {
          if (sound == 1){
             playNote(notes[i], beats[i] * tempo);
          }
          else
          {
             digitalWrite(speaker_pin,LOW);
            }
         }


        delay(tempo / 2);
     }
 }



 else
 {

     lc.clearDisplay(0);
     lc.clearDisplay(1);
     memset(lc0, 0, sizeof(lc0));
     memset(lc1, 0, sizeof(lc1));
     memset(active, 0, sizeof(active));
     memset(screen, 0, sizeof(screen));
     tmpCol = 0;

     while(started == 1)
     {

         if(allLines < 100)
         {
             level = 0;              //Level 0
         }
         else if(allLines < 200)
         {
             level = 1;              //Level 1
         }
         else if(allLines < 300)
         {
             level = 2;              //Level 2
         }
         else if(allLines < 400)
         {
             level = 3;              //Level 3
         }
         else if(allLines < 500)
         {
             level = 4;              //Level 4
         }
         else
         {
             level = 5;              //Level 5
         }


         defDelay = (5 - level) * 100;
         brickDelay = defDelay;


         if(figura == 0)
         {
              figura = random(1,8);
         }
         else
         {
             figura = figuraNext;
         }
         figuraNext = random(1,8);
         angle = 0;



         switch(figura)
         {
             case 1:
             //"O"
                 active[3] = 131072 + 65536;
                 active[4] = 131072 + 65536;
                 fromLeft = 3;
                 fromRight = 3;
                 break;

             case 2:
             //"L"
                 active[3] = 262144 + 131072 + 65536;
                 active[4] = 65536;
                 fromLeft = 3;
                 fromRight = 3;
                 break;

             case 3:
             //"J"
                 active[3] = 65536;
                 active[4] = 262144 + 131072 + 65536;
                 fromLeft = 3;
                 fromRight = 3;
                 break;

             case 4:
             //"T"
                 active[2] = 131072;
                 active[3] = 131072 + 65536;
                 active[4] = 131072;
                 fromLeft = 2;
                 fromRight = 3;
                 break;

             case 5:
             //"I"
                 active[3] = 524288 + 262144 + 131072 + 65536;
                 fromLeft = 3;
                 fromRight = 4;
                 break;

             case 6:
             //"Z"
                 active[2] = 131072;
                 active[3] = 131072 + 65536;
                 active[4] = 65536;
                 fromLeft = 2;
                 fromRight = 3;
                 break;

             case 7:
             //"S"
                 active[2] = 65536;
                 active[3] = 131072 + 65536;
                 active[4] = 131072;
                 fromLeft = 2;
                 fromRight = 3;
                 break;
         }



         for(int krok = 0; krok < lcRows + 1; krok++)
         {
             colCheck = 0;


             for(int i = 0; i < (lcCols / 2); i++)
             {
                 if((digitalRead(left_button) == LOW) && (fromLeft > 0))
                 {
                     moveCheck = 0;
                     for(int colnum = fromLeft; colnum < (lcCols - fromRight); colnum++)
                     {
                         if((active[colnum] & screen[colnum - 1]) == 0)
                         {
                             moveCheck++;
                         }
                     }

                     if(moveCheck == (lcCols - fromLeft - fromRight))
                     {
                         for(int colnum = (fromLeft - 1); colnum < (lcCols - fromRight); colnum++)
                         {
                             if(colnum < (lcCols - 1))
                             {
                                 active[colnum] = active[colnum+1];
                             }
                             else
                             {
                                 active[colnum] = 0;
                             }
                             updateColumn(colnum);
                         }
                         fromLeft--;
                         fromRight++;
                         playNote('E', 10);
                         buttonDelay(200);
                     }
                 }
             }





             for(int i = 0; i < (lcCols / 2); i++)
             {
                 if((digitalRead(right_button) == LOW) && (fromRight > 0))
                 {
                     moveCheck = 0;
                     for(int colnum = fromLeft; colnum < (lcCols - fromRight); colnum++)
                     {
                         if((active[colnum] & screen[colnum + 1]) == 0)
                         {
                             moveCheck++;
                         }
                     }

                     if(moveCheck == (lcCols - fromLeft - fromRight))
                     {
                         for(int colnum = (lcCols - fromRight); colnum > (fromLeft - 1); colnum--)
                         {
                             if(colnum > 0)
                             {
                                 active[colnum] = active[colnum-1];
                             }
                             else
                             {
                                 active[colnum] = 0;
                             }
                             updateColumn(colnum);
                         }
                         fromLeft++;
                         fromRight--;
                         playNote('E', 10);
                         buttonDelay(200);
                     }
                 }
             }



             if(digitalRead(down_button) == LOW)
             {
                 brickDelay = 0;
                 playNote('b', 10);
             }
             else
             {
                 brickDelay = defDelay;
             }



             for(int i = 0; i < (lcCols / 2); i++)
             {
                 if(digitalRead(rotate_button) == LOW)
                 {

                     switch(figura)
                     {
                         case 1:
                         //"O"
                             break;

                         case 2:
                         //"L"
                             switch(angle)
                             {
                                 case 0:
                                 // . o .        . . .
                                 // . o .  --->  o o o
                                 // . o o        o . .
                                     if((fromLeft > 0)
                                     && (((active[fromLeft + 1] | (active[fromLeft + 1] << 1)) & screen[fromLeft - 1]) == 0))
                                     {
                                         active[fromLeft - 1] = (active[fromLeft + 1] | (active[fromLeft + 1] << 1));
                                         updateColumn(fromLeft - 1);
                                         active[fromLeft] = (active[fromLeft + 1] << 1);
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft + 1] << 1);
                                         updateColumn(fromLeft + 1);
                                         fromLeft--;
                                         angle = 1;
                                     }
                                     break;

                                 case 1:
                                 // . . .        o o .
                                 // o o o  --->  . o .
                                 // o . .        . o .
                                     if((((active[fromLeft + 2] << 1) & screen[fromLeft]) == 0)
                                     && ((((active[fromLeft + 1] << 1) | (active[fromLeft + 1] >> 1)) & screen[fromLeft + 1]) == 0))
                                     {
                                         active[fromLeft] = (active[fromLeft + 2] << 1);
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = active[fromLeft + 1] | (active[fromLeft + 1] << 1) | (active[fromLeft + 1] >> 1);
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = 0;
                                         updateColumn(fromLeft + 2);
                                         fromRight++;
                                         angle = 2;
                                     }
                                     break;

                                 case 2:
                                 // o o .        . . o
                                 // . o .  --->  o o o
                                 // . o .        . . .
                                     if((fromRight > 0)
                                     && (((active[fromLeft] >> 1) & screen[fromLeft]) == 0)
                                     && ((((active[fromLeft + 1] << 1) & active[fromLeft + 1]) & screen[fromLeft + 1]) == 0))
                                     {
                                         active[fromLeft] = (active[fromLeft] >> 1);
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = active[fromLeft];
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = ((active[fromLeft + 1] << 1) | active[fromLeft + 1]);
                                         updateColumn(fromLeft + 2);
                                         fromRight--;
                                         krok--;
                                         angle = 3;
                                     }
                                     break;

                                 case 3:
                                 // . . o        . o .
                                 // o o o  --->  . o .
                                 // . . .        . o o
                                     if(((((active[fromLeft] << 1) | (active[fromLeft] >> 1)) & screen[fromLeft + 1]) == 0)
                                     && (((active[fromLeft] >> 1) & screen[fromLeft + 2]) == 0)
                                     && (krok < lcRows))
                                     {
                                         active[fromLeft] = 0;
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft + 2] | (active[fromLeft + 2] >> 1));
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = ((active[fromLeft + 2] >> 1) & (active[fromLeft + 2] >> 2));
                                         updateColumn(fromLeft + 2);
                                         fromLeft++;
                                         krok++;
                                         angle = 0;
                                     }
                                     break;
                             }
                             break;

                         case 3:
                         //"J"
                             switch(angle)
                             {
                                 case 0:
                                 // . o .        o . .
                                 // . o .  --->  o o o
                                 // o o .        . . .
                                     if((fromRight > 0)
                                     && ((((active[fromLeft] << 2) | (active[fromLeft] << 1)) & screen[fromLeft]) == 0)
                                     && (((active[fromLeft] << 1) & screen[fromLeft + 2]) == 0))
                                     {
                                         active[fromLeft] = ((active[fromLeft] << 2) | (active[fromLeft] << 1));
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = ((active[fromLeft + 1] << 1) & (active[fromLeft + 1] >> 1));
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = active[fromLeft + 1];
                                         updateColumn(fromLeft + 2);
                                         fromRight--;
                                         krok--;
                                         angle = 1;
                                     }
                                     break;

                                 case 1:
                                 // o . .        . o o
                                 // o o o  --->  . o .
                                 // . . .        . o .
                                     if((krok < lcRows)
                                     && ((((active[fromLeft + 1] << 1) | (active[fromLeft + 1] >> 1)) & screen[fromLeft + 1]) == 0)
                                     && (((active[fromLeft + 2] << 1) & screen[fromLeft + 2]) == 0))
                                     {
                                         active[fromLeft] = 0;
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft + 1] | (active[fromLeft + 1] << 1) | (active[fromLeft + 1] >> 1));
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = (active[fromLeft + 2] << 1);
                                         updateColumn(fromLeft + 2);
                                         fromLeft++;
                                         krok++;
                                         angle = 2;
                                     }
                                     break;

                                 case 2:
                                 // . o o        . . .
                                 // . o .  --->  o o o
                                 // . o .        . . o
                                     if((fromLeft > 0)
                                     && (((active[fromLeft + 1] >> 1) & screen[fromLeft - 1]) == 0)
                                     && ((((active[fromLeft + 1] >> 1) | (active[fromLeft + 1] >> 2)) & screen[fromLeft + 1]) == 0))
                                     {
                                         active[fromLeft - 1] = (active[fromLeft + 1] >> 1);
                                         updateColumn(fromLeft - 1);
                                         active[fromLeft] = active[fromLeft - 1];
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft] | (active[fromLeft + 1] >> 2));
                                         updateColumn(fromLeft + 1);
                                         fromLeft--;
                                         angle = 3;
                                     }
                                     break;

                                 case 3:
                                 // . . .        . o .
                                 // o o o  --->  . o .
                                 // . . o        o o .
                                     if((((active[fromLeft] >> 1) & screen[fromLeft]) == 0)
                                     && ((((active[fromLeft] << 1) | (active[fromLeft >> 1])) & screen[fromLeft + 1]) == 0))
                                     {
                                         active[fromLeft] = (active[fromLeft] >> 1);
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = ((active[fromLeft + 1] << 1) | active[fromLeft + 2]);
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = 0;
                                         updateColumn(fromLeft + 2);
                                         fromRight++;
                                         angle = 0;
                                     }
                                     break;
                             }
                             break;

                         case 4:
                         //"T"
                             switch(angle)
                             {
                                 case 0:
                                 // . . .        . o .
                                 // o o o  --->  o o .
                                 // . o .        . o .
                                     if(((active[fromLeft + 1] << 1) & screen[fromLeft + 1]) == 0)
                                     {
                                         //active[fromLeft]
                                         active[fromLeft + 1] = active[fromLeft + 1] | (active[fromLeft + 1] << 1);
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = 0;
                                         updateColumn(fromLeft + 2);
                                         fromRight++;
                                         angle = 1;
                                     }
                                     break;

                                 case 1:
                                 // . o .        . o .
                                 // o o .  --->  o o o
                                 // . o .        . . .
                                     if((fromRight > 0)
                                     && ((active[fromLeft] & screen[fromLeft + 2])== 0))
                                     {
                                         //active[fromLeft]
                                         active[fromLeft + 1] = active[fromLeft + 1] & (active[fromLeft + 1] << 1);
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = active[fromLeft];
                                         updateColumn(fromLeft + 2);
                                         fromRight--;
                                         krok--;
                                         angle = 2;
                                     }
                                     break;

                                 case 2:
                                 // . o .        . o .
                                 // o o o  --->  . o o
                                 // . . .        . o .
                                     if((((active[fromLeft + 1] >> 1) & screen[fromLeft + 1]) == 0)
                                     && (krok < lcRows))
                                     {
                                         active[fromLeft] = 0;
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = active[fromLeft + 1] | (active[fromLeft + 1] >> 1);
                                         updateColumn(fromLeft + 1);
                                         //active[fromLeft + 2]
                                         fromLeft++;
                                         krok++;
                                         angle = 3;
                                     }
                                     break;

                                 case 3:
                                     if((fromLeft > 0)
                                     && ((active[fromLeft + 1] & screen[fromLeft - 1]) == 0))
                                     {
                                         active[fromLeft - 1] = active[fromLeft + 1];
                                         updateColumn(fromLeft - 1);
                                         active[fromLeft] = active[fromLeft] & (active[fromLeft] >> 1);
                                         updateColumn(fromLeft);
                                         fromLeft--;
                                         angle = 0;
                                     }
                                     break;
                             }
                             break;

                         case 5:
                         //"I"
                             switch(angle)
                             {
                                 case 0:
                                 // . o . .        . . . .
                                 // . o . .  --->  o o o o
                                 // . o . .        . . . .
                                 // . o . .        . . . .
                                     if((fromLeft > 0)
                                     && (fromRight > 1)

                                     && ((((((active[fromLeft] >> 1) & (active[fromLeft] << 2)) & screen[fromLeft - 1]) & screen[fromLeft + 1]) & screen[fromLeft + 2]) == 0))
                                     {
                                         active[fromLeft - 1] = ((active[fromLeft] >> 1) & (active[fromLeft] << 2));
                                         updateColumn(fromLeft - 1);
                                         active[fromLeft] = active[fromLeft - 1];
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = active[fromLeft];
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = active[fromLeft];
                                         updateColumn(fromLeft + 2);
                                         fromLeft--;
                                         fromRight -= 2;
                                         krok -= 2;
                                         angle = 1;
                                     }
                                     break;

                                 case 1:
                                 // . . . .        . . o .
                                 // o o o o  --->  . . o .
                                 // . . . .        . . o .
                                 // . . . .        . . o .
                                     if((krok < (lcRows - 1))
                                     && (((active[fromLeft] << 1) | (active[fromLeft] >> 1) | (active[fromLeft] >> 2)) & screen[fromLeft + 2]) == 0)
                                     {
                                         active[fromLeft] = 0;
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = 0;
                                         updateColumn(fromLeft + 1);

                                         active[fromLeft + 2] = (active[fromLeft + 2] | (active[fromLeft + 2] << 1) | (active[fromLeft + 2] >> 1) | (active[fromLeft + 2] >> 2));
                                         updateColumn(fromLeft + 2);
                                         active[fromLeft + 3] = 0;
                                         updateColumn(fromLeft + 3);
                                         fromLeft += 2;
                                         fromRight++;
                                         krok += 2;
                                         angle = 2;
                                     }
                                     break;

                                 case 2:
                                 // . . o .        . . . .
                                 // . . o .  --->  . . . .
                                 // . . o .        o o o o
                                 // . . o .        . . . .
                                     if((fromLeft > 1)
                                     && (fromRight > 0)

                                     && ((((((active[fromLeft] << 1) & (active[fromLeft] >> 2)) & screen[fromLeft - 2]) & screen[fromLeft - 1]) & screen[fromLeft + 1]) == 0))
                                     {
                                         active[fromLeft - 2] = ((active[fromLeft] << 1) & (active[fromLeft] >> 2));
                                         updateColumn(fromLeft - 2);
                                         active[fromLeft - 1] = active[fromLeft - 2];
                                         updateColumn(fromLeft - 1);
                                         active[fromLeft] = active[fromLeft - 1];
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = active[fromLeft];
                                         updateColumn(fromLeft + 1);
                                         fromLeft -= 2;
                                         fromRight--;
                                         krok--;
                                         angle = 3;
                                     }
                                     break;

                                 case 3:
                                 // . . . .        . o . .
                                 // . . . .  --->  . o . .
                                 // o o o o        . o . .
                                 // . . . .        . o . .
                                     if((krok < (lcRows))
                                     && (((active[fromLeft] >> 1) | (active[fromLeft] << 1) | (active[fromLeft] << 2)) & screen[fromLeft + 1]) == 0)
                                     {
                                         active[fromLeft] = 0;
                                         updateColumn(fromLeft);

                                         active[fromLeft + 1] = (active[fromLeft + 1] | (active[fromLeft + 1] >> 1) | (active[fromLeft + 1] << 1) | (active[fromLeft + 1] << 2));
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = 0;
                                         updateColumn(fromLeft + 2);
                                         active[fromLeft + 3] = 0;
                                         updateColumn(fromLeft + 3);
                                         fromLeft++;
                                         fromRight += 2;
                                         krok++;
                                         angle = 0;
                                     }
                                     break;
                             }
                             break;

                         case 6:
                         //"Z"
                             switch(angle)
                             {
                                 case 0:
                                 // . . .        . o .
                                 // o o .  --->  o o .
                                 // . o o        o . .
                                     if(((active[fromLeft + 1] & screen[fromLeft]) == 0)
                                     && (((active[fromLeft + 1] << 1) & screen[fromLeft + 1]) == 0))
                                     {
                                         active[fromLeft] = active[fromLeft + 1];
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft + 1] << 1);
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = 0;
                                         updateColumn(fromLeft + 2);
                                         fromRight++;
                                         angle = 1;
                                     }
                                     break;

                                 case 1:
                                 // . o .        o o .
                                 // o o .  --->  . o o
                                 // o . .        . . .
                                     if((fromRight > 0)
                                     && ((((active[fromLeft] << 2) & (active[fromLeft] << 1)) & screen[fromLeft]) == 0)
                                     && (((active[fromLeft] & active[fromLeft + 1]) & screen[fromLeft + 2]) == 0))
                                     {
                                         active[fromLeft] = ((active[fromLeft] << 2) & (active[fromLeft] << 1));
                                         updateColumn(fromLeft);
                                         //active[fromLeft + 1]
                                         active[fromLeft + 2] = (active[fromLeft] >> 1);
                                         updateColumn(fromLeft + 2);
                                         fromRight--;
                                         krok--;
                                         angle = 2;
                                     }
                                     break;

                                 case 2:
                                 // o o .        . . o
                                 // . o o  --->  . o o
                                 // . . .        . o .
                                     if((krok < lcRows)
                                     && (((active[fromLeft + 1] >> 1) & screen[fromLeft + 1]) == 0)
                                     && (((active[fromLeft + 2] << 1) & screen[fromLeft + 2]) == 0))
                                     {
                                         active[fromLeft] = 0;
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft + 1] >> 1);
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = (active[fromLeft + 2] | (active[fromLeft + 2] << 1));
                                         updateColumn(fromLeft + 2);
                                         fromLeft++;
                                         krok++;
                                         angle = 3;
                                     }
                                     break;

                                 case 3:
                                 // . . o        . . .
                                 // . o o  --->  o o .
                                 // . o .        . o o
                                     if((fromLeft > 0)
                                     && (((active[fromLeft] & active[fromLeft + 1]) & screen[fromLeft - 1]) == 0)
                                     && (((active[fromLeft + 1] >> 1) & screen[fromLeft + 1]) == 0))
                                     {
                                         active[fromLeft - 1] = (active[fromLeft] & active[fromLeft + 1]);
                                         updateColumn(fromLeft - 1);
                                         //active[fromLeft]
                                         active[fromLeft + 1] = (active[fromLeft - 1] >> 1);
                                         updateColumn(fromLeft + 1);
                                         fromLeft--;
                                         angle = 0;
                                     }
                                     break;
                             }
                             break;

                         case 7:
                         //"S"
                             switch(angle)
                             {
                                 case 0:
                                 // . . .        o . .
                                 // . o o  --->  o o .
                                 // o o .        . o .
                                     if(((active[fromLeft + 1] << 1) & screen[fromLeft]) == 0)
                                     {
                                         active[fromLeft] = (active[fromLeft + 1] << 1);
                                         updateColumn(fromLeft);
                                         //active[fromLeft + 1]
                                         active[fromLeft + 2] = 0;
                                         updateColumn(fromLeft + 2);
                                         fromRight++;
                                         angle = 1;
                                     }
                                     break;

                                 case 1:
                                 // o . .        . o o
                                 // o o .  --->  o o .
                                 // . o .        . . .
                                     if((fromRight > 0)
                                     && (((active[fromLeft + 1] << 1) & screen[fromLeft + 1]) == 0)
                                     && (((active[fromLeft] & (active[fromLeft] << 1)) & screen[fromLeft + 2]) == 0))
                                     {
                                         active[fromLeft] = (active[fromLeft] & active[fromLeft + 1]);
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft + 1] << 1);
                                         updateColumn(fromLeft + 1);
                                         active[fromLeft + 2] = (active[fromLeft] << 1);
                                         updateColumn(fromLeft + 2);
                                         fromRight--;
                                         krok--;
                                         angle = 2;
                                     }
                                     break;

                                 case 2:
                                 // . o o        . o .
                                 // o o .  --->  . o o
                                 // . . .        . . o
                                     if((krok < lcRows)
                                     && (((active[fromLeft + 1] >> 1) & screen[fromLeft + 2]) == 0))
                                     {
                                         active[fromLeft] = 0;
                                         updateColumn(fromLeft);
                                         //active[fromLeft + 1]
                                         active[fromLeft + 2] = (active[fromLeft + 1] >> 1);
                                         updateColumn(fromLeft + 2);
                                         fromLeft++;
                                         krok++;
                                         angle = 3;
                                     }
                                     break;

                                 case 3:
                                 // . o .        . . .
                                 // . o o  --->  . o o
                                 // . . o        o o .
                                     if((fromLeft > 0)
                                     && ((active[fromLeft + 1] & ((active[fromLeft + 1] >> 1)) & screen[fromLeft - 1]) == 0)
                                     && ((active[fromLeft + 1] & screen[fromLeft]) == 0))
                                     {
                                         active[fromLeft - 1] = (active[fromLeft + 1] & (active[fromLeft + 1] >> 1));
                                         updateColumn(fromLeft - 1);
                                         active[fromLeft] = active[fromLeft + 1];
                                         updateColumn(fromLeft);
                                         active[fromLeft + 1] = (active[fromLeft - 1] << 1);
                                         updateColumn(fromLeft + 1);
                                         fromLeft--;
                                         angle = 0;
                                     }
                                     break;
                             }
                             break;
                     }
                     playNote('E', 10);
                     buttonDelay(200);
                 }
             }


             //Restart
             if(digitalRead(start_button) == LOW)
             {
                 memset(lc0, 0, sizeof(lc0));
                 memset(lc1, 0, sizeof(lc1));
                 memset(active, 0, sizeof(active));
                 memset(screen, 0, sizeof(screen));
                 score = 0;
                 allLines = 0;
                 figura = 0;
                 break;
             }

             for(int colnum = 0; colnum < lcCols; colnum++)
             {

                 if((screen[colnum] & (active[colnum] >> 1)) == 0)
                 {
                     colCheck++;
                 }

                 else
                 {
                     colCheck = 0;
                     if(krok == 0)
                     {
                         started = 0;
                     }
                 }
             }

             if((colCheck == lcCols) && (krok < lcRows))
             {
                 for(int colnum = 0; colnum < lcCols; colnum++)
                 {
                     active[colnum] = active[colnum] >> 1;
                     updateColumn(colnum);
                 }
             }
             else
             {
                 break;
             }
             delay(brickDelay);
         }

         for(int colnum = 0; colnum < lcCols; colnum++)
         {
             screen[colnum] = screen[colnum] | (lc0[colnum] << (lcRows / 2));
             screen[colnum] = screen[colnum] | lc1[colnum];
             lc0[colnum] = 0;
             lc1[colnum] = 0;
             active[colnum] = 0;
         }



         currLines = 0;
         for(int rownum = 0; rownum < lcRows; rownum++)
         {
             colCheck = 0;
             for(int colnum = 0; colnum < lcCols; colnum++)
             {
                 if(((screen[colnum] >> rownum) & 1) == 1)
                 {
                     colCheck++;
                 }
             }
             if(colCheck == lcCols)
             {
                 //Animacja kasowania
                 for(int colnum = 0; colnum < lcCols; colnum++)
                 {
                     tmpCol = ~((int) round(pow(2, rownum)));
                     screen[colnum] = screen[colnum] & tmpCol;
                     updateColumn(colnum);

                     switch(currLines)
                     {
                         case 0:
                             playNote('b', 20);
                             break;
                         case 1:
                             playNote('D', 20);
                             break;
                         case 2:
                             playNote('F', 20);
                             break;
                         case 3:
                             playNote('A', 20);
                             break;
                     }
                     delay(30);

                     tmpCol = (int) (round(pow(2, rownum)) - 1);
                     tmpCol = screen[colnum] & tmpCol;
                     screen[colnum] = (screen[colnum] >> (rownum + 1));
                     screen[colnum] = (screen[colnum] << rownum);
                     screen[colnum] = screen[colnum] | tmpCol;

                 }


                 for(int colnum = 0; colnum < lcCols; colnum++)
                 {
                     updateColumn(colnum);
                 }
                 rownum--;
                 currLines++;
                 allLines++;
             }
         }

         if(currLines > 0)
         {
             score += (int) round(pow(4, currLines-1));
         }
    }

gameOver();
// == Game Over ==

 }
}

void gameOver()
{
  playNote('F', 80);
  playNote('A', 60);
  playNote('F', 80);
  playNote('A', 60);

     int cima[] =
     {
         B11111111,   //     o     o o o
         B11111111,   //   o o o    o
         B11111111,   //   o   o     o o
         B11111111,   //     o     o
         B11111111,   //     o     o o o
         B11111111,   //
         B11111111,   //   o o o   o o o
         B11111111    //     o     o   o
     };

     int baixo[] =
     {
         B11111111,   //     o     o o
         B11111111,   //     o     o   o
         B11111111,   //     o     o     o
         B11111111,   //
         B11111111,   //     o       o o o
         B11111111,   //     o       o
         B11111111,   //     o         o
         B11111111    //     o     o o o
     };

 for(int rownum = 8; rownum >= 0; rownum--)
     {
         lc.setRow(1,rownum,baixo[rownum]);
         delay(100);
     }

     for(int rownum = 8; rownum >= 0; rownum--)
     {
         lc.setRow(0,rownum,cima[rownum]);
         delay(100);
     }

     delay(1800);

}

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

Red Mod
La cinta Kapton es resistente al calor y eléctricamente aislante que se usa mucho en electrónica e impresión 3D. Si has estado en esta afición por un tiempo hay una buena probabilidad de que tengas un rollo a mano.

Una o dos capas de cinta Kapton aplicada a las matrices las hacen menos propensas a lavarse bajo luz brillante. El color de la cinta es lo suficientemente similar a los LEDs rojos que brillan a través con poca dificultad, mientras que la mayoría de la luz ambiente está bloqueada.

La película de enmascarar “Rubylith” (empleada en diseño gráfico) probablemente funcionaría igual de bien, o quizás mejor. Este film puede conseguirse en tiendas de arte decentes de la vieja escuela.

Los componentes electrónicos no tienen cambio, devolución ni garantía“. Advertencia asquerosa si las hay. ¿Cuántas veces sufrimos dolores de estómago a causa de esa “advertencia”? ¿100 veces, 1000 veces? Y estoy seguro que muchas veces más. La realidad es que la padecemos cada vez que vamos a comprar componentes para nuestros proyectos a cualquier comercio de electrónica. Luego de finalizar nuestra compra, cansados de renegar con algún vendedor de la tercera edad con conocimientos obsoletos (son los peores porque además padecen de Complejo Mesiánico) o bien con conocimientos nulos si son de la primera edad, llegamos a casa, preparamos una bebida “espirituosa” y comenzamos con la construcción de nuestro nuevo “Frankenstein”. Luego de varias horas de denodado esfuerzo, sangre, sudor y lágrimas, no funciona. ¿El problema? La respuesta se encuentra en las primeras 9 palabras de este párrafo. Una vez más la ira incontrolable se apodera de nuestro cuerpo y nuestra mente brillante.

Como una solución a ese martirio, me complace compartir la presente publicación como un vaso de agua en el vasto desierto de la ignorancia y apatía de quienes nos proveen de nuestros preciados componentes electrónicos para nuestros proyectos. Con este “Probador Universal de Componentes” podremos probar o testear nuestros componentes antes de conectarlos a nuestros proyectos y evitarnos esa interminable agonía que nos invade cuando nuestro montaje no funciona sin causas aparentes.

Con este “Probador Universal de Componentes” podemos comprobar el estado de los siguientes componentes:

  • Transistores Bipolares NPN.
  • Transistores Bipolares PNP.
  • Transistor Unijuntura Programable (PUT).
  • Transistor Unijuntura (UJT).
  • Circuito Integrado Temporizador 555.
  • Circuito Integrado Amplificador Operacional Simple.
  • Tiristor Convencional (SCR).
  • Triodo para Corriente Alterna (TRIAC).

El lector perspicaz seguramente ya tendrá la idea formada que este probador universal se encuentra conformado por diversos circuitos de prueba individuales específicos para cada componente enumerado en la lista anterior. El diagrama esquemático se observa en las siguientes imágenes:

(click para ampliar)

Como se observa en el diagrama esquemático el circuito se compone de 5 módulos o circuitos de prueba individuales que podemos construir por separado acorde a nuestras necesidades. En el circuito impreso, al igual que en el diagrama esquemático, se observan las líneas separando cada circuito de prueba individualmente:

(click para ampliar)

(click para ampliar)

(click para ampliar)

Existen dos maneras de construir este montaje. La primera, utilizada para esta publicación, consiste en armar la placa en su totalidad. La otra manera es realizar el montaje de el/los módulo/s que seleccionemos a nuestro criterio y de esa manera se reduce el tiempo y costo de armado ya que no se construirán todos los circuitos de prueba.

Lista de Componentes
Fuente de Alimentación
1 Transformador 9V + 9V 300mA
2 Diodos Rectificadores 1N4001
1 Capacitor Electrolítico 1000uF 16V

Módulo de Prueba para Circuito Integrado Amplificador Operacional Simple
2 Resistencias 120KΩ 0.25W
1 Resistencia 100KΩ 0.25W
1 Resistencia 15KΩ 0.25W
2 Resistencias 1KΩ 0.25W
1 Resistencias 560Ω 0.25W
2 Capacitores Electrolíticos 10uF 16V
1 Diodo LED 5mm [color a elección]

Módulo de Prueba para SCR o TRIAC
1 Resistencia 15KΩ 0.25W
1 Resistencia 2K2Ω 0.25W
1 Resistencia 1KΩ 0.25W
2 Resistencias 820Ω 0.25W
1 Resistencia 390Ω 0.25W
1 Resistencia 100Ω 0.25W
1 Capacitor Electrolítico 33uF 16V
2 Capacitores Electrolíticos 22uF 16V
1 Capacitor Cerámico 10nF 50V
2 Transistores Unijuntura Programables 2N6027
1 Diodo LED 5mm [color a elección]

Módulo de Prueba para Circuito Integrado Temporizador 555
1 Resistencia 3M9Ω 0.25W
1 Resistencia 10KΩ 0.25W
2 Resistencias 560Ω 0.25W
1 Capacitor Cerámico 220nF 50V
2 Diodos LEDs 5mm [colores a elección]

Módulo de Prueba para UJT o PUT
1 Resistencia 15KΩ 0.25W
1 Resistencia 2K7Ω 0.25W
1 Resistencia 820Ω 0.25W
1 Resistencia 470Ω 0.25W
2 Resistencias 330Ω 0.25W
1 Resistencia 100Ω 0.25W
1 Resistencia 47Ω 0.25W
1 Capacitor Electrolítico 22uF 16V
1 Transistor NPN 2A238
1 Transistor PNP 2A258
1 Diodo LED 5mm [color a elección]

Módulo de Prueba para Transistores Bipolares NPN o PNP
1 Resistencia 47KΩ 0.25W
1 Resistencia 10KΩ 0.25W
1 Resistencia 330Ω 0.25W
1 Resistencia 270Ω 0.25W
1 Resistencia 220Ω 0.25W
1 Capacitor Electrolítico 1uF 16V
1 Circuito Integrado NE555
1 Circuito Integrado CD4027
4 Diodos Rápidos de Señal 1N4148
2 Diodos LEDs 5mm [colores a elección]

La placa armada en su totalidad se observa en las siguientes imágenes:

(click para ampliar)

(click para ampliar)

(click para ampliar)

IMPORTANTE: el Transistor Unijuntura Programable 2A6027 utilizado originalmente debió ser sustituido por el PUT 2N6027 ya que actualmente se encuentra discontinuada su producción. La disposición de pines es diferente a la serigrafía que se encuentra en la placa original y debe ser instalado como se muestra en la siguiente imagen:

(click para ampliar)

Todo el conjunto puede alimentarse con una batería de 9V, por lo tanto una versión portátil de este “Probador Universal de Componentes” es bastante sencilla de realizar. Para esto debemos eliminar el transformador y los dos diodos rectificadores 1N4001 para luego conectar la batería en paralelo al capacitor electrolítico de 1000uF sin suprimir el mismo.
Un detalle menor pero que resultaría práctico es seleccionar de manera adecuada el color de los diodos LEDs para facilitar la visualización y detección rápida de anomalías en los componentes bajo prueba.

IMPORTANTE: el siguiente vídeo muestra la utilización del “Probador Universal de Componentes” empleando como prueba componentes nuevos ya que al momento de realizar el vídeo no disponía en mi poder de componentes defectuosos, por lo tanto los valores arrojados representan el estado de componentes en óptimas condiciones. Cualquier patrón diferente al mostrado nos indicará que estamos en presencia de uno o varios componentes defectuosos. La prueba de PUT/UJT no fué llevada a cabo ya que no disponía de dichos componentes al momento de realizar el vídeo.

En publicaciones anteriores compartí con ustedes 3 circuitos amplificadores de audio con el circuito integrado LM386 (ver Amplificador de Audio LM386 o Amplificador de Audio LM386 v2) y el último publicado fué Amplificador de Audio TDA7297 15W + 15W RMS (Ideal PC) que emplea el circuito integrado TDA7297.

Debido al éxito del Amplificador de Audio TDA7297 15W + 15W RMS (Ideal PC) publicado en este humilde blog, decidí construir un nuevo amplificador más potente que puede operar en modo estéreo o puente para cuando se requiera de más potencia como amplificador para el subwoofer de tu sistema de cine en casa, conocido comercialmente como “Home Theater”.

El circuito tiene como elemento principal un circuito integrado TDA7294, en el cual se han agrupado todos los componentes necesarios para conformar una etapa de potencia de audio. Este circuito integrado, fabricado por ST Microelectronics, es monolítico con encapsulado Multiwatt15, clase AB para aplicaciones de alta fidelidad. Es ampliamente utilizado en los amplificadores de audio comerciales.Como puede observarse la cantidad de componentes externos es mínima, además cuenta con funciones de “Stand-By” y “Silencio”, protección contra corto circuitos y protección contra exceso de temperatura.

Los circuitos integrados deben ser dotados de un generoso disipador de calor como se observa en la imagen de abajo. La grasa siliconada debe aplicarse en su justa medida (con una capa delgada es suficiente), ya que en exceso produce el efecto contrario. Además puede incluirse un led indicador de encendido del color y/o brillo que deseemos con una resistencia acorde al mismo.

(click para ampliar)

(click para ampliar)

(click para ampliar)

(click para ampliar)

El circuito aquí presentado utiliza dos circuitos integrados TDA7294 y puede utilizarse en 2 modos de operación: estéreo o bridge. En modo estéreo todos los puentes (4 en total: JB1, JB2, JB3, JB4) deben encontrarse abiertos, o sea, sin soldar al PCB y entrega una potencia de salida de 80W + 80W estéreo. Los parlantes deben conectarse a los conectores etiquetados como Lout y Rout respectivamente y la entrada de audio se conecta a Lin y Rin.
En modo bridge todos los puentes (4 en total: JB1, JB2, JB3, JB4) deben estar instalados en el PCB y entrega una potencia de salida de 180W mono. El parlante debe conectarse a los conectores etiquetados como Lout (+) y Rout (-) y la entrada de audio se conecta a Lin. Rin se cortocircuitará a tierra mediante JB2. En este modo el fabricante (ST Microelectronics) recomienda que la impedancia del parlante no sea menor a 8 ohmios.

El transformador recomendado para este amplificador tiene una tensión el bobinado secundario de 25-0-25 VAC con una corriente de 6A como mínimo. La fuente de alimentación simétrica ya se encuentra en el PCB del amplificador y consiste en un puente rectificador de 8A y 2 capacitores electrolíticos blindados de 15000uF con una tensión de trabajo de 50V como mínimo.

Lista de Componentes
5 Resistencias 22KΩ 0.25W [metalfilm]
2 Resistencias 680Ω 0.25W [metalfilm]
2 Resistencias 100KΩ 0.25W [metalfilm]
1 Resistencia 27KΩ 0.25W [metalfilm]
1 Resistencia 2K7Ω 0.25W [metalfilm]
2 Resistencias 47KΩ 0.25W [metalfilm]
4 Capacitores 100nF 100V [poliéster]
2 Capacitores 560nF 100V [poliéster]
2 Capacitores 220nF 100V [poliéster]
2 Capacitores Electrolíticos 15000uF 50V [blindados]
8 Capacitores Electrolíticos 22uF 50V
2 Diodos de Conmutación Rápida 1N4148
2 Circuitos Integrados TDA7294
1 Puente Rectificador KBU610 [1000V 6A]
1 Transformador con una tensión en el bobinado secundario de 25-0-25 VAC con una corriente de 6A como mínimo
30cm de Alambre para Bobinado 1mm diámetro

A continuación se encuentra el PCB en escala 1:1 (el documento PDF debe ser impreso con la escala al 100%), el cual se encuentra listo para la aplicación por transferencia térmica (método “de planchado” ). Además se encuentra la vista de disposición de los componentes (layout) como información complementaria.

Amplificador de Audio TDA7294 PCB

Amplificador de Audio TDA7294 Layout